Liquid-liquid phase separation in aerosol particles: Dependence on O:C, organic functionalities, and compositional complexity
نویسندگان
چکیده
[1] Atmospheric aerosol particles may undergo liquidliquid phase separation (LLPS) when exposed to varying relative humidity. In this study we investigated the occurrence of LLPS for mixtures consisting of up to ten organic compounds, ammonium sulfate, and water in relationship with the organic oxygen-to-carbon (O:C) ratio. LLPS always occurred for O:C < 0.56, never occurred for O:C > 0.80, and depended on the specific types and compositions of organic functional groups in the regime 0.56 < O:C < 0.80. In the intermediate regime, mixtures with a high share of aromatic compounds shifted the limit of occurrence of LLPS to lower O:C ratios. The number of mixture components and the spread of the O:C range did not notably influence the conditions for LLPS to occur. Since in ambient aerosols O:C range typically between 0.2 and 1.0, LLPS is expected to be a common feature of tropospheric aerosols. Citation: Song, M., C. Marcolli, U. K. Krieger, A. Zuend, and T. Peter (2012), Liquidliquid phase separation in aerosol particles: Dependence on O:C, organic functionalities, and compositional complexity, Geophys. Res. Lett., 39, L19801, doi:10.1029/2012GL052807.
منابع مشابه
Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gasparticle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel ...
متن کاملLiquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles
Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS) and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5, 6, and 7 carbon atoms (C5, C6 and C7) having oxygen-to-carbon ...
متن کاملImages reveal that atmospheric particles can undergo liquid-liquid phase separations.
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-partic...
متن کاملEffects of molecular weight and temperature on liquid–liquid phase separation in particles containing organic species and inorganic salts
Atmospheric particles containing organic species and inorganic salts may undergo liquid–liquid phase separation when the relative humidity varies between high and low values. To better understand the parameters that affect liquid–liquid phase separation in atmospheric particles, we studied the effects of molecular weight and temperature on liquid–liquid phase separation in particles containing ...
متن کاملSeparation of Sedative – Hypnotic Drugs with Mixed Micellar Liquid Chromatography
Separation of ten sedative- hypnotic drugs was performed by RP-HPLC using mixed micellar mobile phase. Effect of temperature, type and amount of organic modifier in mobile phase on efficiency (N) and asymmetry factor (B/A) showed that, the appropriate conditions for a good separation were 35°C and 7% (V/V) butanol in mobile phase. Variations of selectivity factor versus butanol concent...
متن کامل